3.201 \(\int \frac {\sec ^2(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\)

Optimal. Leaf size=73 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} f (a+b)^{3/2}}+\frac {\tan (e+f x)}{2 f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

[Out]

1/2*arctan(b^(1/2)*tan(f*x+e)/(a+b)^(1/2))/(a+b)^(3/2)/f/b^(1/2)+1/2*tan(f*x+e)/(a+b)/f/(a+b+b*tan(f*x+e)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4146, 199, 205} \[ \frac {\tan ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} f (a+b)^{3/2}}+\frac {\tan (e+f x)}{2 f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^2/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]]/(2*Sqrt[b]*(a + b)^(3/2)*f) + Tan[e + f*x]/(2*(a + b)*f*(a + b + b*
Tan[e + f*x]^2))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {\sec ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (a+b+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x)}{2 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{2 (a+b) f}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} (a+b)^{3/2} f}+\frac {\tan (e+f x)}{2 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.89, size = 211, normalized size = 2.89 \[ \frac {\sec ^4(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\frac {a \sin (2 f x)-(a+2 b) \sin (2 e)}{a (\cos (e)-\sin (e)) (\sin (e)+\cos (e))}-\frac {(\cos (2 e)-i \sin (2 e)) (a \cos (2 (e+f x))+a+2 b) \tan ^{-1}\left (\frac {(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt {a+b} \sqrt {b (\cos (e)-i \sin (e))^4}}\right )}{\sqrt {a+b} \sqrt {b (\cos (e)-i \sin (e))^4}}\right )}{8 f (a+b) \left (a+b \sec ^2(e+f x)\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^2/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^4*(-((ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f
*x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])]*(a + 2*b + a*Cos[2*(e + f*x)])*(Cos[2
*e] - I*Sin[2*e]))/(Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])) + (-((a + 2*b)*Sin[2*e]) + a*Sin[2*f*x])/(a*(C
os[e] - Sin[e])*(Cos[e] + Sin[e]))))/(8*(a + b)*f*(a + b*Sec[e + f*x]^2)^2)

________________________________________________________________________________________

fricas [B]  time = 0.57, size = 368, normalized size = 5.04 \[ \left [\frac {4 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - {\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {-a b - b^{2}} \log \left (\frac {{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )\right )} \sqrt {-a b - b^{2}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{8 \, {\left ({\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right )} f\right )}}, \frac {2 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - {\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {a b + b^{2}} \arctan \left (\frac {{\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b}{2 \, \sqrt {a b + b^{2}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{4 \, {\left ({\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right )} f\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[1/8*(4*(a*b + b^2)*cos(f*x + e)*sin(f*x + e) - (a*cos(f*x + e)^2 + b)*sqrt(-a*b - b^2)*log(((a^2 + 8*a*b + 8*
b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 + 4*((a + 2*b)*cos(f*x + e)^3 - b*cos(f*x + e))*sqrt(-a
*b - b^2)*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)))/((a^3*b + 2*a^2*b^2 + a*b^3)
*f*cos(f*x + e)^2 + (a^2*b^2 + 2*a*b^3 + b^4)*f), 1/4*(2*(a*b + b^2)*cos(f*x + e)*sin(f*x + e) - (a*cos(f*x +
e)^2 + b)*sqrt(a*b + b^2)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)/(sqrt(a*b + b^2)*cos(f*x + e)*sin(f*x + e)
)))/((a^3*b + 2*a^2*b^2 + a*b^3)*f*cos(f*x + e)^2 + (a^2*b^2 + 2*a*b^3 + b^4)*f)]

________________________________________________________________________________________

giac [A]  time = 0.67, size = 87, normalized size = 1.19 \[ \frac {\frac {\pi \left \lfloor \frac {f x + e}{\pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\relax (b) + \arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b + b^{2}}}\right )}{\sqrt {a b + b^{2}} {\left (a + b\right )}} + \frac {\tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a + b\right )} {\left (a + b\right )}}}{2 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

1/2*((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))/(sqrt(a*b + b^2)*(a + b))
+ tan(f*x + e)/((b*tan(f*x + e)^2 + a + b)*(a + b)))/f

________________________________________________________________________________________

maple [A]  time = 0.57, size = 66, normalized size = 0.90 \[ \frac {\tan \left (f x +e \right )}{2 \left (a +b \right ) f \left (a +b +b \left (\tan ^{2}\left (f x +e \right )\right )\right )}+\frac {\arctan \left (\frac {\tan \left (f x +e \right ) b}{\sqrt {\left (a +b \right ) b}}\right )}{2 f \left (a +b \right ) \sqrt {\left (a +b \right ) b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x)

[Out]

1/2*tan(f*x+e)/(a+b)/f/(a+b+b*tan(f*x+e)^2)+1/2/f/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 71, normalized size = 0.97 \[ \frac {\frac {\tan \left (f x + e\right )}{{\left (a b + b^{2}\right )} \tan \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}} + \frac {\arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {{\left (a + b\right )} b} {\left (a + b\right )}}}{2 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

1/2*(tan(f*x + e)/((a*b + b^2)*tan(f*x + e)^2 + a^2 + 2*a*b + b^2) + arctan(b*tan(f*x + e)/sqrt((a + b)*b))/(s
qrt((a + b)*b)*(a + b)))/f

________________________________________________________________________________________

mupad [B]  time = 4.47, size = 69, normalized size = 0.95 \[ \frac {\mathrm {tan}\left (e+f\,x\right )}{2\,f\,\left (a+b\right )\,\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a+b\right )}+\frac {\mathrm {atan}\left (\frac {\sqrt {b}\,\mathrm {tan}\left (e+f\,x\right )\,\left (2\,a+2\,b\right )}{2\,{\left (a+b\right )}^{3/2}}\right )}{2\,\sqrt {b}\,f\,{\left (a+b\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(e + f*x)^2*(a + b/cos(e + f*x)^2)^2),x)

[Out]

tan(e + f*x)/(2*f*(a + b)*(a + b + b*tan(e + f*x)^2)) + atan((b^(1/2)*tan(e + f*x)*(2*a + 2*b))/(2*(a + b)^(3/
2)))/(2*b^(1/2)*f*(a + b)^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{2}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**2/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Integral(sec(e + f*x)**2/(a + b*sec(e + f*x)**2)**2, x)

________________________________________________________________________________________